Вы здесь

Гребные электрические установки

Гребные электрические установки

28.06.2015 Автор: 67
Facebook Twitter Google+ Pinterest

§ 25 Гребные электрические установки

Энергетические установки, в которых мощность от главных двигателей передается к гребным винтам с помощью электропередачи, принято называть гребными электрическими установками (ГЭУ).

Электрическая передача позволяет обеспечить выполнение одного из основных требований, предъявляемых к энергетической установке ледокола,— сохранения постоянства мощности главного двигателя при изменениях момента на гребном винте.

Наибольшее распространение получили следующие схемы ГЭУ:

1. С регулированием магнитного потока гребного электродвигателя (ГЭД) при постоянном магнитном потоке генератора.

2. С регулированием магнитного потока главного генератора при постоянном магнитном потоке ГЭД.

3. С регулированием магнитных потоков как генератора, так и ГЭД.

Примером схем первого типа, с автоматическим регулированием магнитного потока ГЭД, является схема, примененная на ледоколах типа Уинд (рис. 118), с использованием быстродействующего регулятора типа «Сильверстат». Магнитопровод этого регулятора имеет две обмотки. Одна из них (он) подключена к зажимам якоря Д ГЭД, и ее ток пропорционален напряжению на якоре. Вторая обмотка (от) подключена на падение напряжения в добавочных полюсах ДП ГЭД, и ее ток пропорционален току главной цепи. Ампер-витки обмотки ОТ создают магнитный поток, противоположно направленный потоку, создаваемому ампер-витками обмотки ОН. Суммарный магнитный поток обеих обмоток воздействует на якорь регулятора Р, который при перемещении замыкает или размыкает пластинчатые пружинящие контакты, подключенные к секциям реостата rр. При номинальных значениях тока и напряжения ГЭД якорь регулятора занимает положение, обеспечивающее протекание номинальной силы тока в обмотке возбуждения электродвигателя ОВД и, следовательно, номинальную величину вращающего момента.

При внезапном возрастании момента сопротивления на гребном винте, в первый период обороты гребного вала и напряжение генератора остаются постоянными, а ток в главной цепи резко возрастает. Пропорционально увеличению тока главной цепи увеличивается и ток в токовой обмотке регулятора ОТ. При этом уменьшается магнитный поток в магнитопроводе, а следовательно, и сила притяжения якоря регулятора. В результате якорь отклоняется и замыкает некоторую часть пружинящих контактов, шунтируя тем самым отдельные секции реостата. Это вызывает увеличение тока возбуждения ГЭД и соответственно снижение скорости его вращения. Мощность, потребляемая ГЭД, останется при этом примерно постоянной, так как напряжение генератора почти не изменяется. Регулятор будет усиливать возбуждение до тех пор, пока ток главной цепи не достигнет номинального значения.

 

При уменьшении момента сопротивления, приложенного к винту, ток главной цепи уменьшается. При этом размагничивающее действие токовой обмотки ОТ регулятора уменьшится и якорь разомкнет некоторую часть пружинящих контактов. Сопротивление реостата в цепи возбуждения ГЭД увеличится, ток возбуждения уменьшится, а скорость вращения возрастет. Мощность, потребляемая ГЭД, вновь сравняется с номинальной. Таким образом, применение регулятора позволяет полностью использовать номинальную мощность установки на всех режимах плавания без перегрузки первичных двигателей.

Примером схем второго типа, с автоматическим регулированием магнитного потока главного генератора, может служить схема, примененная на ледоколе Капитан Белоусов. Здесь применена система возбуждения и регулирования с использованием быстродействующих регуляторов (рис. 119).

Для питания обмоток возбуждения главных генераторов ОВГ применены двухобмоточные возбудители ВГ. Одна из обмоток, противокомпаундная (ПКО), включена на падение напряжения в дополнительных полюсах ДП и ГЭД. Другая — обмотка управления ОУ получает питание от поста управления ПУ через быстродействующий регулятор rр. Быстродействующий регулятор и обмотка ПКО предназначены для ограничения тока в главной цепи при изменяющемся моменте сопротивления. При увеличении тока в главной цепи выше номинального усиливается действие обмотки ПКО, включенной навстречу обмотке управления. В результате снижается напряжение на главном генераторе Г, а следовательно уменьшается скорость вращения ГЭД, что предохраняет первичные двигатели от перегрузки. Быстродействующий регулятор начинает действовать при токе, большем номинального. Пружина регулятора стремится повернуть подвижный контакт rр в положение, при котором возбуждение генератора будет наибольшим. Обмотка регулятора включена на падение напряжения в дополнительных полюсах ГЭД, и поэтому она обтекается током, пропорциональным току главной цепи. При наличии тока в главной цепи на якорь регулятора Яр действует вращающий момент, которому противодействует момент пружины. Когда ток главной цепи достигнет величины, на которую настроен регулятор, момент, создаваемый токовой катушкой, превзойдет момент пружины, вследствие чего подвижные контакты начнут перемещаться, вводя дополнительное сопротивление в обмотку ОУ. Ток в обмотке ОУ будет уменьшаться; напряжение генератора тоже уменьшится. Процесс этот прекратится, как только падение напряжения на дополнительных полюсах гребного электродвигателя достигнет величины, соответствующей номинальному току нагрузки.

Недостаток регуляторов — малая скорость реагирования, не обеспечивающая поддержание стабильности тока главной цепи при ударах льдин о лопасти винта, реверсах и т. д.

Примером схем третьего типа, с автоматическим регулированием магнитного потока главных генераторов и гребного электродвигателя, может служить схема, примененная на ледоколе Мурманск. Рассмотрим бортовой контур ГЭУ этого ледокола (рис. 120), уделив внимание системе управления и регулирования ГЭУ.

Бортовой контур (рис. 120, а) состоит из двух главных генераторов Г, ГЭД—Д, возбудителей генераторов ВГ и двигателя ВД. Возбуждение агрегатов ВГ и ВД обеспечивается при помощи управляемых (тиристорных) и неуправляемых (диодных) выпрямителей. В свою очередь выпрямители получают питание от вспомогательной трехфазной судовой сети. Необходимо отметить, что противокомпаундная обмотка ПКО действует только в аварийном режиме, когда выходит из строя тиристорное возбуждение генераторов. При этом обмотки ОВВГпх и ОВВГзх выполняют функции обмотки управления ОУ и шунтовой ОШ соответственно.

Возбуждение ГЭД осуществляется следующим образом: от вспомогательной сети переменного тока через выпрямитель (рис 120, б) получает питание основная обмотка возбуждения возбудителя ОВВДОСН. Возбудитель двигателя ВД возбуждается и подает питание на обмотку возбуждения двигателя ОВД.

Другая обмотка ВД — дополнительная ОВВДдоп — подготовлена к действию и работает только в динамических режимах. При перекладке рукоятки поста управления ПУ получает питание обмотка возбуждения возбудителей главных генераторов ОВВГпх или ОВВГзх. Эти обмотки получают питание от вспомогательной сети переменного тока через тиристорные выпрямители 5а и 5б. Возбуждается возбудитель генератора ВГ и подает питание на обмотки возбуждения генератора ОВГ.

Схема предусматривает регулирование по постоянству мощности и по постоянству скорости. Эти режимы обеспечиваются воздействием обратных связей (по току и напряжению главной цепи, по скорости вращения ГЭД, по напряжению возбуждения генераторов и току возбуждения двигателя) на возбуждение ВГ и ВД. Например, при реверсе система регулирования работает следующим образом. Рукоятка поста управления перекладывается из положения «полный вперед» в положение «полный назад». При этом на выходе поворотного трансформатора, жестко связанного с постом управления, знак задающего сигнала изменяется на противоположный. Этот сигнал проходит через регулирующие блоки la—1в или 1б—1в (первый случай — для режима постоянства скорости, второй — для режима постоянства мощности) на блоки управления 4а и 4б тиристорными выпрямителями 5а и 5б. Блоки 4а и 4б воздействуют таким образом, что тиристорный выпрямитель 5а, питающий обмотку возбуждения переднего хода ОВВГпх, закрывается, а открывается выпрямитель 56. Такое переключение осуществляется при помощи знакоинвертора 3. Генераторы возбуждаются в обратном направлении, и происходит реверс ГЭД. При этом основные параметры ГЭУ (скорость, ток, напряжение) резко изменяются. Ток главной цепи меняет знак и, достигнув максимальной величины, остается примерно на этом уровне значительное время. Несмотря на сравнительно большой ток главной цепи, дополнительная обмотка ГЭД почти до полной остановки винта не работает, т. е. реверс происходит при постоянном потоке ГЭД. Объясняется это тем, что в схеме предусмотрена корректировка работы дополнительной обмотки ОВВДДОП в зависимости от обратной мощности.

В момент рекуперации логическое устройство обратной мощности 12 подает сигнал на блок регулирования 1г, который, воздействуя на схему управления тиристорного выпрямителя 5в,запирает его. Когда заканчивается рекуперативный период, вступает в действие дополнительная обмотка ОВВДДОП, ток возбуждения ГЭД увеличивается, ток главной цепи уменьшается, и вскоре основные параметры ГЭУ приближаются к нормальным.

Более подробные сведения по гребным электрическим установкам можно найти в [19, 21, 28, 29].

К числу других типов передачи мощности от первичного двигателя к гребному винту следует отнести гидравлические передачи. В судовых энергетических установках используются передачи двух типов: гидравлические муфты и гидротрансформаторы. Для энергетических установок ледоколов представляют интерес в основном гидротрансформаторы и гидравлические преобразователи крутящего момента.

Гидротрансформаторы обладают способностью плавно изменять передаточное отношение в зависимости от момента на ведомом валу при практически постоянной скорости вращения первичного двигателя, т. е. обладают саморегулируемостью, обеспечивая при этом удовлетворительные тяговые характеристики энергетической установки.

По сравнению с ГЭУ гидротрансформаторы имеют следующие преимущества: меньшие вес и габариты, меньшую строительную стоимость, меньший штат обслуживающего персонала.

Однако гидротрансформаторы обладают и весьма существенными недостатками: малой гибкостью схемы установки (так как при гидропередаче каждый главный двигатель соединяется только с одним гребным валом), сравнительно невысокой мощностью на заднем ходе (на 20—30% ниже, чем на переднем). Кроме того, на парциальных нагрузках крутящий момент гидротрансформатора при попадании льда под лопасти винта может оказаться недостаточным, в результате чего возможна остановка гребного винта и даже его поломка. Отсутствие практического опыта работы судов с гидротрансформаторами в ледовых условиях не позволяет дать исчерпывающего ответа о целесообразности их установки на ледоколах.

Facebook Twitter Google+ Pinterest

Boatportal.ru

logo